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Digraphs, homomorphisms and polymorphisms

Definition

A digraph is a pair G = (G ;→), where G is the set of vertices and
→ ⊆ G 2 is the set of edges.

Definition

A homomorphism from G to H is a map f : G → H that preserves edges:

a→ b in G =⇒ f (a)→ f (b) in H.

Hom(G,H) = { f | f : G→ H }, write G→ H iff Hom(G,H) 6= ∅.

Definition

The clone of polymorphisms of G is Hom(G) =
⋃∞

n=1 Hom(Gn,G).
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CSP and cores

Definition

The constraint satisfaction problem for template H is the membership
problem for

CSP(G) = {H | H→ G }.

Proposition

→ is a quasi-order on the set of finite digraphs. If G is a minimal member
of the ↔ class of H, then

every endomorphism of G is an automorphism,

G is uniquely determined up to isomorphism, and

G is isomorphic to an induced substructure of H.

Definition

G is a core if it has no proper endomorphism. The core of H is the
uniquely determined core structure in the ↔ class of H.
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Finite duality and exponentiation

set of finite relational structures modulo ↔ is a partially ordered set

isomorphic to the set of core isomorphism types

minimal [maximal] element: 1-element structure, with empty [full]
relations

join: disjoint union, meet: direct product,

satisfies distributive laws, join irreducible = connected

Heyting algebra (relatively pseudocomplemented)

F ∧G→ H ⇐⇒ HF×G =
(
HG)F has a loop ⇐⇒ F→ HG

if G is join irreducible with lower cover H, then (G,HG) is a dual pair

Theorem (Nešeťril, Tardif, 2010)

Let G be a finite connected core structure. Then G has a dual pair H, i.e.
{F | F→ G } = {F | H 6→ F }, if and only if G is a tree.
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Exponentiation

Definition

Let HG be the digraph on the set HG with edge relation f → g iff

a→ b in G =⇒ f (a)→ g(b) in H.

Proposition

Hom(G,H) = {f ∈ HG : f → f }
Gn = GLn where Ln = ({1, . . . , n}; =)(
HG)F = HG×F

HF ×GF = (H×G)F

the composition map ◦ : HG ×GF → HF is a homomorphism

If f → g in HGn
and f1 → g1, . . . , fn → gn in GF, then

f (f1, . . . , fn)→ g(g1, . . . gn) in HF
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GG is interesting

GG has a loop at id, so every instance of CSP(GG) has a solution.
Can we test for non-trivial solutions?

(GG)
H

= G(G×H)

If G is a core and we can solve CSP(G), then we can test if an
instance of CSP(GG) has a non-trivial solution.

If we can test for non-trivial solutions in CSP(GG), then we can solve
CSP(G).

Connectivity properties of GG sometimes can be lifted to the set of

solutions in (GG)
H

.
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Connectivity in GG

Theorem (Gyenizse; 2013)

Suppose, that |G| ≥ 6. Then GG is connected if and only if

G is empty,

there exists a ∈ G such that a→ x for all x ∈ G , or

there exists a ∈ G such that x → a for all x ∈ G .

Definition

End(G) is the induced subgraphs of GG on Hom(G,G).
Aut(G) = End(G) ∩ Sym(G ).

Theorem (Gyenizse; 2013)

Aut(G) is a disjoint union of complete digraphs. The number of elements
in each component is the same and is a product of factorials.
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Structure, polymorphisms and connectivity

Theorem (Larose, Zádori; 1997)

If G is a connected poset and has Maltsev polymorphisms, then End(G) is
connected.

Theorem (Larose, Loten, Zádori; 2005)

If G is connected, reflexive, symmetric and has Hobby-McKenzie
polymorphisms (for omitting types 1 and 5), then End(G) is connected.

Theorem (M, Zádori; 2012)

If G is connected, reflexive and has Hobby-McKenzie polymorphisms, then
End(G) is connected.
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Collapse of Maltsev conditions

Theorem (Larose, Loten, Zádori; 2005)

If a finite reflexive and symmetric digraph has Gumm polymorphisms, then
it has a near-unanimity polymorphism

Theorem (M, Zádori; 2012)

If a finite reflexive digraph has Gumm polymorphisms, then it has a
near-unanimity polymorphism and totally symmetric polymorphisms for all
arities.

Theorem (Kazda; 2011)

If a finite digraph has a Maltsev polymorphism, then it has a majority
polymorphism.
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How far can we push this?

We need a structural property on G

We need an induced subgraph of GG

We need some polymorphisms of G
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Reduction of CSP to digraphs

Theorem (Buĺın, Delić, Jackson, Niven; 2013)

For every finite relational structure A there exists a finite digraph G, such
that CSP(A) and CSP(G) are polynomially equivalent and almost all
Maltsev conditions, e.g.

Taylor term,

Willard terms,

Hobby-McKenzie terms,

Gumm terms,

edge term,

Jónsson terms,

near-unanimity term,

but not Maltsev term

hold equivalently by A and G.
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Required structural property

Definition

The digraph G is smooth if its edge relation is subdirect (no sources and
sinks).

Definition

The algebraic length of a directed path is the number of forward edges
minus the number of backward edges. The algebraic length of G is the
smallest positive algebraic length of oriented cycles (closed paths) of G.

If G2 is connected, then G is connected, has algebraic length 1 and
has no source or no sink.
If G is smooth, algebraic length 1 and (strongly) connected, then Gn

is smooth, algebraic length 1 and (strongly) connected for all n ≥ 1.

Theorem

If G = (G ; E ) is smooth, connected, algebraic length 1, and has Maltsev
polymorphism, then it has join and meet polymorphisms.
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The loop lemma

Lemma (Barto, Kozik, Niven; 2008)

If G is connected, smooth, algebraic length 1 and has a weak
near-unanimity polymorphism, then G has a loop.

Theorem (Barto, Kozik, Niven; 2008)

The core of a smooth digraph with a weak near-unanimity polymorphism is
a disjoint union of cycles.

Proposition

If GG is strongly connected, then G has a loop.

Take a path id→ f1 → f2 → . . . fn → id where fk is a constant map. Then
id ·f1 · · · fn−1 · fn → f1 · f2 · · · fn · id, so we have a loop at f1 · · · fn, which is a
constant map.
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Connectivity in End(G)

Example

The following digraph G has Maltsev, join and meet semilattice
polymorphisms.

1

a b

0

It has only four endomorphisms: id, 0, 1 and inversion, they are all
isolated. However, id is connected to 0 in GG:

id = x ∧ 1→ x ∧ a→ x ∧ 0 = 0.
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Required subgraph of GG

Definition

Pol1(G) is the induced subgraph of GG on the set of unary polynomials
of the algebra G = (G ; Hom(G)).

Proposition

Pol1(G) ≤ GG is generated by the identity and the constant maps

G is an induced subgraph of Pol1(G) on the set of constant maps

Pol1(G) is smooth if and only if G is smooth

If G is smooth, connected and algebraic length 1, then every
component of Pol1(G) has algebraic length 1

Proof.

For a polynomial p = t(x , a1, . . . , an) we can find an oriented cycle in Gn

of algebraic length 1 going through (a1, . . . , an). Then the polymorphism
t ∈ Hom(Gn+1,G) = Hom(Gn,GG) maps this cycle to a cycle in Pol1(G).
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Twin polynomials

Proposition

If G is smooth, connected and algebraic length 1, then the connectedness
relation on Pol1(G) is a congruence.

Definition

Let A be an algebra. Two unary polynomials p, q ∈ Pol1(A) are twins, if
there exist a term t of arity n + 1 and constants ā, b̄ ∈ An such that

p = t(x , ā) and q = t(x , b̄).

The transitive closure of twin polynomials is the twin congruence τ of
the algebra Pol1(A).

Corollary

If G is smooth, connected and algebraic length 1, then the twin
congruence blocks are connected.
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The component of the identity

Definition

A map f ∈ GG is idempotent, if f 2 = f ; it is a retraction, if f → f and
f 2 = f ; and it is proper, if f 6= id.

Lemma (M, Zádori; 2012)

If G is reflexive or symmetric and the component of the identity in End(G)
contains something other than id, then it contains a proper retraction.

Theorem

If the smooth component of id in GG (or in any submonoid) contains a
non-permutation, then it contains a proper retraction.

Corollary

If G is smooth and the component of id contains a constant map, then the
smooth part of GG is connected, G is connected and it contains a loop.
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Required Maltsev condition

Example

The digraph G = ({0, 1, 2}; 6=) with 6 edges is connected, smooth, has
algebraic length 1, and the identity in GG is isolated.

Example (Larose, Zádori; 2004)

This poset has a semilattice polymorhism, but not dismantable, so
Pol1(G) = End(G) is not connected.
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How far can we push this?

Smooth, algebraic length 1

Pol1(G)

Hobby-McKenzie terms (omitting types 1 and 5)
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Putting everything together

Theorem

If G is a smooth, connected, algebraic length 1 with Hobby-McKenzie
polymorphisms, then Pol1(G) is connected (and τ = 1).

We prove that τ = 1 for the twin congruence of Pol1(G)

Clear for join semi-distributivite (omitting types 1, 2 and 5)
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Corollaries

Corollary

Every finite smooth connected digraph of algebraic length 1 with
Hobby-McKenzie polymorphisms (omitting types 1 and 5) has a loop.

Corollary

A locally finite idempotent variety V has Hobby-McKenzie terms (omits
types 1 and 5) iff for every algebra A ∈ V and connected subdirect relation
E ≤sd A2 of algebraic length 1 the graph Pol1((A; E )) is connected.

Conjecture

If G is smooth, connected, algebraic length 1 and has Gumm
polymorphisms, then it has a near-unanimity polymorphism.
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Connectivity in Polid2 (G)

Theorem (M, Zádori; 2012)

If G is reflexive, connected and has Gumm polymorphisms, then π1 and π2

are connected in the graph Homid(G2,G) of idempotent binary morphisms.

Theorem

If G is a smooth, connected, algebraic length 1 digraph with Gumm
polymorphisms, then the digraph Polid2 (G) on the set of idempotent binary
polynomials of G is connected (π1 and π2 are connected).

Proof.

Take a path id = f0 ∼ f1 ∼ · · · ∼ fk = c in Pol1(G) for some constant c .

di (x , x , y) = di (x , f0(x), y) ∼ di (x , f1(x), y) ∼ · · · ∼ di (x , fk(x), y)

= di (x , c, y) = di (x , fk(y), y) ∼ · · · ∼ di (x , f0(y), y) = di (x , y , y), and

p(x , y , y) = p(f0(x), f0(y), y) ∼ p(f1(x), f1(y), y) ∼ · · · ∼ p(c , c , y) = y .
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Idempotent subalgebras

Definition

An idempotent subalgebra of A is a subalgebra B ≤ A that is closed
under all idempotent polynomials of A.

Proposition

If Polid2 (G) is connected, then every smooth idempotent subalgebra of G is
connected.

Somewhat related to absorbing subalgebra (is it the same?)

For Jónsson algebras di (x , a, y) are idempotent binary polynomials for
any choice of constant a.

For Maltsev algebras p(x , s(x), s(y)) and p(s(x), s(y), y) are
idempotent binary polynomials for any choice of unary polynomial s.
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Problems

Let G be smooth connected digraph of algebraic length 1 with Taylor
polymorphism

Pol1(G)/τ is generated by two elements (id and c)

Every τ block is smooth, connected, algebraic length 1

Every τ block contains a loop (by the loop lemma)

Pol1(G)/τ has a compatible semigroup operation (composition)

Does Pol1(G)/τ have compatible semilattice (totally symmetric)
operation?

Let A be an algebra.

If τ = 1 in Pol1(A), then the term condition C (1, 1;α) does not hold
for any α < 1. What are the connections between τ = 1, term
condition, rectangulation?

If A has Willard-terms (omitting types 1 and 2), does Pol1(A)/τ have
a semilattice (totally symmetric) term?
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Thank You!
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